
Estimating of Bellman function via suboptimal
strategies

Jan Zeman
Institute of Information Theory and Automation

Academy of Sciences of the Czech Republic
Prague, Czech Republic
janzeman3@seznam.cz

Abstract—The paper concerns approximate dynamic decision
making. It deals with solving Bellman equation to obtain the
Bellman function via so-called suboptimal strategies. The sub-
optimal strategies are strategies reflecting the revision of the
realized past decisions. The revision is conditioned on availability
of future knowledge. Suboptimal strategies help to transform the
estimation of Bellman function to solving system of algebraic
equations, when parametrized form of Bellman function is used.
The presented approach is applied to futures trading task.

Index Terms—Bellman function, optimization, dynamic deci-
sion making

I. INTRODUCTION

Decision making is present in any area of the human
interest since the majority of real-life problems can be regarded
as a selection among several alternatives under uncertainty.
Though decision making has been deeply investigated by many
sciences (games, social sciences, etc.), there is no universal
ready-to-use approach. The main difficulty is to find a sequence
of decisions optimizing some criterion while ensuring the
best long-term performance under incomplete knowledge and
uncertainty.

Dynamic programming (DP) is known to be an effective
approach to solve this complex task in a recursive manner
[1], [2]. However DP suffers from the computational com-
plexity known as curse-of-dimensionality [3], which makes
conventional DP solution infeasible. A number of approximate
solutions (mostly suggested within computer science) has been
developed, however none of them can be considered for
decision making.

The majority of approximation techniques came from ma-
chine learning and artificial intelligence fields. This has been
partially motivated by a conceptual similarity of reinforcement
learning [4], [5] and dynamic programming. The approxima-
tion approaches to DP can be formally divided into:
Model-based approaches, which assume knowledge of the
system model and focus on efficient solving Bellman equation.
These methods include for example indirect approximation of
Bellman function [6]; real-time dynamic programming [7].
Model-free methods, which do not assume availability of the
system model. They include for example temporal difference
method (TDM) [8], Q-learning [9].

The mentioned approximate DP techniques have been ap-
plied to different application areas. The most notable success
has been achieved in the applications, where environment does

not change (or changes very slowly) and there is a possibility to
collect rich amount of data [10]–[12]. To guarantee the reliable
results, the convergence properties of some of the suggested
approaches (e.g. TDM) should be investigated in advance.
Besides, the approximation techniques can also suffer from of
the curse-of-dimensionality and the risk should be eliminated.
To summarize, there is no universal, ready-to-use approximate
DP approach, which can cope with large state- and action-
spaces, incomplete knowledge and uncertainty.

The objective of the research is to find an approximate DP
technique that satisfies the above-mentioned requirements and
can be applied to decision making. The proposed approxima-
tion has been motivated by DM task arisen in economic anal-
ysis and futures contract trading but the solution developed is
of general nature and can be of interest for other applications.

Section II recalls the decision-making task using dynamic
programming. Section III introduces the suboptimal strategies
and details of their usage for the approximation. Main algo-
rithmic aspects of the proposed approach are described by
Section IV. The preliminary results of the approach obtained
on the future trading data are described in Section V. Section
VI summarizes the main features of the approach and open
questions remained.

II. DECISION-MAKING TASK

The decision-making task assumes a decision maker and a
system. The system is a part of the world, which is of interest
for the decision maker.

The decision maker has own goal with respect to the system
expressed in the form of a gain function GTτ , which quantifies
the degree of reaching the goal on the time interval {τ, . . . , T}.
The data available to decision maker consists of observations
made on the system yt and its decisions ut, where t is
discrete time, t ∈ t∗ = {1, 2, . . . , T}. Using the knowledge
Pt = (y1, . . . , yt, u1, . . . , ut−1) of the past system outputs
and previous decisions, the decision maker designs a decision
ut ∈ u∗t , where u∗t is a set of admissible decisions.

At time t, the decision maker designs the strategy to
maximize the gain GTt , which depends on the system output
over the whole decision period, even on the unknown out-
put (yt+1, . . . , yT). The information available to the decision
maker at time t is Pt. Therefore the decision maker is forced

to optimize the expected value E of the gain:

Vt(Pt) = max
ut,...,uT

E [GTt |Pt],

which defines Bellman function Vt(Pt).
The assumption of an additive gain function

Gt2t1 = Gtt1 +Gt2t+1 for any t, t1, t2 ∈ {1, 2, . . . , T}

and the optimality principle [1] allow us rewrite Bellman
function in the recursive shape:

Vt(Pt) = max
ut,...,ut+h

E [Gt+ht + Vt+h+1(Pt+h+1)|Pt], (1)

where the maximizing arguments ut, . . . , ut+h are the pro-
posed decision rules and h is a constant, which allows the
design of multi-step decision.

For the horizon T growing to infinity, Bellman function
converges to stationary form [2]:

V(Pt) = max
ut,...,ut+h

E
[
Gt+ht + V(Pt+h+1)|Pt

]
. (2)

The decision ut is viewed as a decision rule dependent
on the available knowledge Pt, ut = ut(Pt). We differ the
notation from here onward: A decision is denoted by letter
ut, a decision based on decision rule is denoted as a function
with the argument ut(Pt) and a decision rule is denoted as a
function without an argument ut(.).

The maximization over rules (2) can be approximated by
maximization over values of decisions (see [13] for details):

V(Pt) = max
ut,...,ut+h

E
[
Gt+ht + V(Pt+h+1)|Pt, ut, . . . , ut+h

]
.

(3)

III. ESTIMATING BELLMAN FUNCTION

Bellman equation (3) characterizes the approach for design-
ing the decision ut. The right-hand side of equation consists
of two terms: the h-step gain and the Bellman function
V(Pt+h+1). The suitable interpretation is that h-step gain
characterizes reaching the short-term aims, whereas Bellman
function characterizes the long-term aims. Hence, it is impor-
tant to consider the expected value of both terms. This paper
does not deal with the expected value of h-step gain, but the
paper focuses on expressing the expected value of Bellman
function.

Most of approaches estimates Bellman function using fol-
lowing update rule (so-called value iteration):

V̂t(Pt) = max
ut

E [Gtt + V̂t−1(Pt+1)|Pt, ut],

where V̂t(.) is estimation of Bellman function obtained at
time t. The convergence of the approach is proved in [1], hence
most of the approaches continue and expand this branch.

We try to extract Bellman function directly from Bellman
equation by solving the following system of equations:

V(P1) = max
u1,...,u1+h

E [G1+h
1 + V(Ph+2)

|P1, u1, . . . , u1+h],

V(P2) = max
u2,...,u2+h

E [G2+h
2 + V(Ph+3)

|P2, u2, . . . , u2+h], (4)
...

V(Pt) = max
ut,...,ut+h

E [Gt+ht + V(Pt+h+1)

|Pt, ut, . . . , ut+h].

The system consists of Bellman equation (3) indexed by
1, . . . , t. On the authors best knowledge, there is no branch
of research trying find the Bellman function by solving the
system (4).

The system has two main disadvantages: It is the functional
system. Each equation contains maximum function, which
makes computation complex.

The following sections show how to transform the system
to system of algebraic equation. The main contribution of this
paper is in work off the maximum.

A. Suboptimal strategies
This section defines the suboptimal strategies and prepares

the notation for the solving the system (4). The suboptimal
strategies are important for the work off the maximum from
(4).

The decision maker designs and applies a sequence of
admissible decisions, where each decision ut is based on
the maximal knowledge Pt available at time t. A sequence
of admissible decisions is called admissible strategy and is
denoted:

Uat = (u1(P1), u2(P2), . . . , ut(Pt)). (5)

Let us consider an unrealistic strategy focused on decisions
designed as if we had known the future consequences of these
decisions. Let us consider, at time t, the suboptimal strategy
Ut(Pt) as a revision of the past decisions u1, u2, . . . , ut based
on the knowledge Pt available at time t, i.e.

Ut(Pt) = (u1(Pt), u2(Pt), . . . ut(Pt)). (6)

This revision is done at time t and reflects the changes in
decisions caused by growing knowledge. An analogy with the
human revising is: ’If I had known the today’s information, I
would have do anything else yesterday.’

The suboptimal strategy can be designed at each time
instant. Therefore the following sequence of suboptimal strate-
gies can be available at time t:

U1(P1) = (u1(P1)),

U2(P2) = (u1(P2), u2(P2)),

U3(P3) = (u1(P3), u2(P3), u3(P3)),

...
Ut(Pt) = (u1(Pt), u2(Pt), u3(Pt) . . . ut(Pt)).

The admissible strategies converges to the optimal strategy
with growing t, i.e. each decision rule ui(.) tends to optimal
decision rule uO(.) (details can be find in [2]). Consequently,
the suboptimal strategies tends also to the optimal strategy:

Ut(Pt) = (u1(Pt), u2(Pt), u3(Pt), . . .),
↓ for t→ +∞

UO(P∞) = (uO1 , u
O
2 , u

O
3 , . . .),

where uO1 , u
O
2 , u

O
3 , . . . denote the realization of optimal strat-

egy.

B. Assumption on convergence

We assume that there exists time t0 such that for each t ≥
t0, there exists i ∈ N , i < t such that the first i decisions have
reached their optimal values, i.e.

u1(Pt) = uO1 ,

u2(Pt) = uO2 ,

...
ui(Pt) = uOi .

An intuitive motivation for this special convergence is that
there exists time t0 such that any knowledge gained later
cannot improve the previous part of the strategy.

This convergence is a generalization of the suboptimal
strategies behavior found on the trading task (see Section V).
The assumption is crucial for further steps.

C. Similarity indexes

This section defines two indexes, characterizing the degree
of the convergence in a sense defined in Sec. III-B. The indexes
are obtained by comparing a subsequence Ut(Pt) and the
optimal one UOt (P∞).

Similarity index St is a number of identical elements in
Ut(Pt) and UO(P∞).

St =

t∑
i=1

δ(ui(Pt), uOi), (7)

where δ(x, y) = 1 for x = y and δ(x, y) = 0 for x 6= y.
Strict similarity index st is the maximal length of the

identical part of strategies starting from the first element:

st = max
i
{i;∀j ≤ i, uj(Pt) = uOj }. (8)

The definitions of St and st imply st ≤ St ≤ t. Both
similarity indexes show a degree of convergence Ut(Pt) to
the optimal one UOt (P∞). Similarity index St shows the total
degree, whereas strict one st shows the degree of converged
continuous part.

Example: To illustrate the introduced notions, let us
consider the following suboptimal Ut(Pt) and the optimal
UOt (P∞) strategies:

Ut(Pt) = { 1 1 1 1 0 1 1 0 0 },
UOt (P∞) = { 1 1 1 1 1 1 1 1 1 }.

The strategies have 4 elements identical, the fifth element
differs, the sixth and seventh elements are identical and then
strategies differ. The similarity index St = 6, because there
are 6 identical elements in the strategies. The strict similarity
index st = 4, because the fourth element is the last element,
before the first difference occurs.

D. Bellman equation and similarity indexes

Let us focus back to the solving the system (4), which can
be written in short form:

V(Pk) = max
uk,...,uk+h

E [Gk+hk + V(Pk+h+1)

|Pk, uk, . . . , uk+h]

for k ∈ {1, . . . , t}.

Let us extend the used knowledge Pt by optimal strategy
UO(P∞) = (uO1 , . . . , u

O
t+h, . . .) to obtain extended knowl-

edge: Pet = Pt ∪ UO, and search Bellman function for the
extended knowledge, i.e. Bellman function is searched within
the class of function dependent on optimal actions.

Then, the maximum in equations of (4) is reached for
the optimal strategy UO(P∞) = (uO1 , . . . , u

O
t+h, . . .). The

inserting the optimal strategy to system (4), we obtain:

V(Pek) = E [Gk+hk + V(Pek+h+1)|Pk, uOk , . . . , uOk+h]

for k ∈ {1, . . . , t}. (9)

Under the assumption (Sec. III-B), st elements of the opti-
mal strategy UO(P∞) are known at the time t and equal
to the realization of suboptimal strategy (uO1 , . . . , u

O
st) =

(u1(Pt), . . . , ust(Pt)). Hence, the suboptimal decisions can
be inserted into (9):

V(Pek) = E [Gk+hk + V(Pek+h+1)

|Pk, uk(Pt), . . . , uk+h(Pt)]
for k ∈ {1, . . . , st − h}. (10)

The step from (9) to (10) explains the importance of index st,
because the number of equations available to solve the system
(4) descends from t to st − h. Hence, the applicability of the
designed approach is closely related to behavior st according
the time t (possible relations are described in further Sec.
III-F).

We worked off the maximum from (4) and obtained the
system of functional equations (10), which should be solved
to obtain Bellman function. The optimization task is replaced
by solution of the system of functional equations. The follow-
ing section describes its transforming to system of algebraic
equations.

The previous steps generalize the approach in [14]. The
remaining open question is difference between V(Pek) and
V(Pk).

E. Parametrized form of Bellman function

A parametrized form of Bellman function should be chosen
to obtain the suitable approximation of Bellman equation
(10), otherwise we cannot solve it. The parametrized form
typically characterizes a class of functions, which should be
form invariant relative to recursion (10), i.e. the inserting the
form into the right hand side of (10) reproduces the form on
the left one.

Let us select a finite-parametrized form of Bellman func-
tion:

V(Pet) ≈ V (Pet ; Θ), (11)

where Θ ∈ Θ∗ is a vector of unknown parameters. Then,
inserting (11) into the system (10), one can write:

V (Pek ; Θ) + κk = E [Gk+hk + V (Pek+h+1; Θ)

|uk(Pt), . . . , uk+h(Pt)]
for k ∈ {1, . . . , st − h} (12)

where κk is an error caused by approximation (11).
The system of functional equations (10) is reduced to the

system of algebraic equations (12). Thus, the solution of
Bellman equation converges to an estimation of the parameters
Θ.

F. Limitation of the approach

The success of the presented approach depends on the
behavior of the strict similarity index st, which influences the
number of equations in the systems (10) and (12). The number
of equations available in (10) and (12) indicates the available
knowledge about Bellman function and its growing leads to
improvement of the estimation. The number of equations at
the time t is equal to (st−h), hence the increase of st means
growing of the knowledge.

According to behavior of the similarity indexes, we can
expect the following types of task:
• Task with a strong similarity - is a task, when st and St

grow with the time t and indexes are close to time t: the
number of equations in (10), (12) also grows with t. This
type of task yields the best condition for the estimation
of Bellman function via solution (10), (12).

• General task without a similarity - is opposite to the previ-
ous type, when st and St are small constants independent
of t. In this case, the system (10) has a small number of
equations and the number does not grow. This are the
worst conditions to estimate Bellman function by solving
(10), (12), because there could not be enough equations
to find a solution.
In this case, it is better to use different design of Bell-
man function. However even the available ”poor” system
of equations can be used as a prior information about
Bellman function.

• Task with a weak similarity - is between the previous
two extreme types: the strict similarity index st is a small
constant or growing only by jumps, but St grows with t
and is close to t. In this case, Bellman function can be
estimated by solving (10), (12), but the similarity index

St should be used instead of st in definition of equation
systems, i.e. k ∈ {1, . . . , St−h}. This redefinition causes
that the systems (10) or (12) contain the invalid equations
based on non-optimal decisions. It depends on the solved
problem, whether the solution of systems (10) and (12)
provide satisfactory estimation of Bellman function or
not.

IV. ALGORITHMIC ASPECTS

A lot of issues emerges, when the theoretical solutions
are applied in the practice. This section introduces the most
important aspects and shows the algorithms solving them.

The algorithms presented here as well as the introduced
assumptions are partially derived from the properties and
behavior observed on the futures trading task (see Sec. V).

A. Design of suboptimal strategies

The suboptimal strategies are designed using already known
data. Hence, the the expected value can be omitted and the
planning horizon is set to zero h = 0:

Vk(Pk) = max
uk

(Gkk + Vk+1(Pk+1)),

for k ∈ {t, t− 1, . . . , 1}. (13)

The recursion starts from:

Vt+1(Pt+1) = 0. (14)

The hidden problem of the approach based on (13) and (14)
is the dependence of the decision ui, i ∈ {1, 2, . . . , t}, on the
previous decisions i.e. ui = f(u1, u2, . . . , ui−1). Hence, the
design of the suboptimal strategy consists of two steps:

1) Design of Bellman functions: is done using the back-
ward recursion (13) starting from the initial condition (14).
Due to the mentioned dependence of a decision on the previous
one, Bellman function cannot be calculated value-wise (i.e.
inserting all known values from Pt). Moreover, it must be dis-
tinguished, which values from Pt = (y1, . . . , yt, u1, . . . , ut−1)
can be simply inserted and which must be considered and
served as variables. Due to the fact that u1, u2, . . . , ut are de-
signed, all decisions must be considered as variables, whereas
the system output y1, . . . , yt can be simply inserted. Hence,
the following sequence is generated:

Vt(Pt) = bt(u1, u2, . . . , ut−1), (15)
... (16)

V3(Pt) = b3(u1, u2), (17)
V2(Pt) = b2(u1), (18)
V1(Pt) = b1, (19)

where the functions b1(.), b2(.), . . . , bt(.) are functions of
decisions ui, i ∈ {1, 2, . . . , t− 1} for the given yi originating
from Bellman function.
This fact can be interpreted as demonstration of curse of
dimensionality (see [3]), when the dimension of problem (i.e.
memory requirements) grows with the time t.

2) Inserting: of decisions follows the design of Bellman
function. When the backward recursion from the previous
step reaches V1(P1) = b1 (19), the first decision u1 can
be generated. Then, u1 is inserted into the stored function
V2(Pt) = b2(u1) (18) and decision u2 is generated, and so
on.

The two-step algorithm is given by general case and can
be omitted or easier in special problems such the considered
trading task.

Assumption: The realization of the algorithm is possible
only under the assumption of the open loop, i.e. the decisions
cannot influence the system.

B. Estimating similarity indexes

The presented design of systems (10) and (12) relies on
similarity indexes st and St based on the optimal strategy
UO. The strategy is however not available at time t, when
is necessary to calculate the similarity indexes. Hence, the
similarity indexes should be estimated from the available
information.

This fact turn us back to the suboptimal strategies, where
the convergence of the ith decisions with the growing t has
been analyzed:

ui(Pi), ui(Pi+1), ui(Pi+2), . . . , ui(Pt). (20)

Let an element of the suboptimal strategy ui(Pt) is called d-
optimal if it does not change with the growing time for at least
the last d steps:

ui(Pt−d+1) = ui(Pt−d+2) = . . . = ui(Pt), (21)

where d ∈ N is a chosen constant. Then, the strict similarity
index can be estimated as:

ŝt = max
i
{i; if uj(.) for j ∈ {1, . . . , i} are d-optimal}, (22)

and similarity index Ŝt can be estimated as a count of ui(.)
rated as d-optimal:

Ŝt = |{i; if ui(.) is d-optimal}|. (23)

Instead of indexes st and St, it can be advantageous to use
time independent values relating the indexes and the time t.
Let us introduce the values:

c1 = max
t

(t− st), (24)

c2 = max
t

(t− St), (25)

where values c1 and c2 corresponds with maximal number of
equations lost by step from (9) to (10). Now, we can replace
the set {1, . . . , st−h} characterizing the systems (10) and (12)
by the corresponding subset {1, . . . , t− (c1 + h)}.

Instead of the values of the constants c1 and c2 at the time
t, their estimates ĉ1,t and ĉ2,t are used:

ĉ1,t = max
i∈{1,...,t}

(i− ŝi), (26)

ĉ2,t = max
i∈{1,...,t}

(i− Ŝi), (27)

The values ĉ1,t and ĉ2,t increase with the time t and it can
be shown that they converge to a small constant.

The speed of convergence is high, and the time of the
last change tch;1 and tch;2 show the time required to learn
the final values of ĉ1,t and ĉ2,t, which is important for the
implementation.

V. EXAMPLE: FUTURES TRADING

The presented approach has been motivated by futures
trading task [15]. The original aim was to design an automatic
trading system, which analyzes the prices and other market
statistics and generates the recommendation to a trader.

Futures trading task is a task typically solved by exchange
speculator, who takes the available information and decides,
whether to buy or sell the commodity. He can profit by
reselling the commodity, when the price is changing. A profit is
made, when the speculator guesses the direction of the price’s
evolution, otherwise the speculator loses.

A. Futures trading as a game

From our point of view, the futures trading task can be
interpreted as turn based game: the player obtains a price yt
at the beginning of each turn t ∈ {1, 2, . . . , T}. He chooses
his decision ut, his decision partially depends on his guess,
whether the price should increase ut = 1 or decrease ut = −1.
The player can also decide not to play for the turn ut = 0.
At the beginning of the next turn t + 1, the player makes
profit of (yt+1 − yt)ut. But the player pays a transaction cost
C|ut−1−ut| for each change of decision and the player starts
with u0 = 0.

The complexity of the task is in the existence of transaction
cost, because the obtained profit can be smaller than cost paid
for the entering and leaving the game. The second complex
property is in the leaving the game, because the player can hold
his decision for a lot of turns with paid only the first enter,
waiting for the price increase over the acceptable threshold.
In this scope, the player does not speculate only on the
increase (or decrease), he speculates on increase (or decrease)
of the price over the required transaction cost in the acceptable
horizon.

The player aims to maximize his profit up to the horizon
T :

GT1 =

T∑
t=1

(yt − yt−1)ut−1 − C|ut−1 − ut|

with the initial condition u0 = 0.
The described game is a typical optimization problem of

dynamic decision making and all previous ideas can be applied.

B. Available data

We have 35 price sequences available for the off-line
experiments. The data were collected once a day, when the
exchange was closing. Each data set contains data from 1990
to 2005, which makes about 3900 samples all together. Five
price sequences were chosen as a representative for the further
experiments:
• Cocoa - CSCE (CC),

• Petroleum-Crude Oil Light - NMX (CL),
• 5-Year U.S. Treasury Note - CBOT (FV2),
• Japanese Yen - CME (JY),
• Wheat - CBOT (W).

C. The validity of assumption (Sec. III-B)

In the case of futures trading, the optimal strategy can be
found. It is an subsequence of the largest suboptimal strategy
U(PT) designed at the whole sequence. It is possible to say,
which part of subsequence is optimal and to prove this. Hence,
the similarity indexes st and St (respectively constants c1 and
c2) can be directly estimated.

To test of estimation of ŝt and Ŝt we used algorithm
presented in Sec. IV-B with d = 2. The similarity indexes
and constants ĉ1 and ĉ2 were estimated for the available data
(see Tab. I).

The table shows optimistic results. The existence of values
c1, c2 shows that number equations in (10) and (12) will grow.
Thus, the new information about Bellman function will be
added to estimation algorithm in each time t. The small values
of c1, c2 � T show that the suboptimal strategy converges to
the optimal one quickly.

Moreover, the detailed analysis shows that st is equal to St,
and that the ĉ1,t and ĉ2,t stop changing relatively early and the
learning part of the data can be relative small. The estimation
of ĉ1,t and ĉ2,t gives satisfactory results close to real values. All
these facts led to a conclusion that futures trading is the task
with a strong similarity (Sec. III-F). An example of similarity
indexes behavior for a task with a strong similarity is depicted
on Fig. 1.

An exception, possessing a weak similarity, is the market
with ticker CL. The obtained similarity indexes are depicted in
Fig. 2 and Fig. 3. The difference between st and t is noticeable
but it has only a local character, therefore the approach can be
used - with the expectation of worse results on the intervals
with a weak similarity.

D. Estimation of Bellman function parameters

This section express the concrete form of system (12) for
futures trading task, as was obtained in Sec. III-E.

Let the parametrized form of Bellman function be:

V(Pt) ≈ F (ut−1)Ψt, (28)

where Ψt = (yt, yt−1, . . . , yt−n, 1)T is called regressor and
F (.) is a row vector function F (.) = (f1(.), f2(.), . . . fn+2(.)).
The reason of the choice and the related proof can be found

TABLE I
DOMINATING CONSTANTS c1 AND c2

Market c1 c2 ĉ1,T ĉ2,T tch;1 tch;2 T
CC 6 6 7 6 342 342 3822
CL 444 6 446 6 847 2205 3863
FV2 8 8 9 8 383 383 3766
JY 4 4 5 4 50 50 3871
W 7 7 8 7 2452 2452 3822

1000

1005

1010

1015

1020

1025

1030

1000 1005 1010 1015 1020 1025

t
st = St

Time t

Fig. 1. Detail of similarity indexes St and st according the time t (Cocoa
- CC)

in [14]. It is important to mention here that the proof operates
with optimal decisions. The estimating of regressor length n
for futures trading is analyzed in [16].

We consider the form (28) as given and consequently derive
the concrete form of system (12) in this section. The admissible
values of ut are u∗ = {−1, 0, 1}, and the function fi(ut−1) is
fully characterized by three values. Thus, the vector function
F (ut) is fully characterized by 3(n+ 2) parameters:

Θ = (f1(−1), f1(0), f1(1), . . . , fn+2(−1), fn+2(0), fn+2(1)),

which is parameters vector introduced in Section III-E.
To obtain the realization of system (12), we insert (28) into

(12):

Gk+hk − κk = F (uOk−1)Ψk − F (uOk+h)Ψk+h+1

for k ∈ {1, . . . , t− c1 − h}, (29)

where κk is error caused by approximation (12). The obtained
system (29) can be rewritten as a system of linear equations:

b−K = AΘ, (30)

where A is matrix (t− c1−h)× (3n+ 2) with elements from
{−1, 0, 1},

b = (G1+h
1 , G2+h

2 , . . . , Gt−c1t−c1−h)

and
K = (κ1, κ2, . . . , κt−c1−h).

The solution of the system (30) is documented in [17].
The obtained parameters determine Bellman function, which
is used in optimization algorithm presented in [14].

E. Tuning the parameters

The aim of this experiment is to show the influence of
the similarity indexes on the quality of the design. Hence,
the sequence of four generic experiments was designed. The
experiments differ in value of c1 used in design (see Tab. II).

The values were chosen to show basic influence of the c1 on
the final gain. We expect that results should go worse with a
growing distance from the correct value of c1.

Experiment No. 1 uses the smaller value of c1 = 2. This
should cause taking non-optimal invalid equations into the
system (12) and consequently worse results.

Experiment No. 2 uses the best values of c1 and we expected
the best results on it.

Experiments No. 3 and No. 4 take bigger values c1 = 10 and
c1 = 20. These should cause the late adding of the equation
into the system (12), hence the estimation does not use full
available knowledge and may give worse results.

The results of experiments are compared via the gain
function, which characterizes the profit from the trading (see
Tab. II). The gain is summed over all markets. The obtained
results correspond with our expectations, i.e. No. 2 gave the
best profit.

F. Comparison with MPC

The aim of the experiment was to compare the obtained
results with results given by the model predictive control
(MPC). MPC can be viewed as special case of the dynamic
decision task (1), where Bellman function is set to zero
V(Pt) = 0. Hence, the experiment can be almost identical
and the only difference is in Bellman function.

The results of the experiment are in Tab. II. The total profit
of the presented approach is bigger than MPC. But taking the
score market by market, the MPC gives better results at three
markets of five, whereas the presented approach wins only
twice.

VI. CONCLUSIONS

The design of Bellman function is considered in the paper.
The approach is based on the idea to solve the system of
Bellman equations. The so-called suboptimal strategies are
defined and used to work off the maximization from the
obtained system. Bellman function is then computed as a
solution of the functional equations system, which can be
transferred into the system of algebraic equation by choosing
the parametrized shape of Bellman function.

TABLE II
RESULTS OVERVIEW: RELATION OF c1-VALUES AND THE GAIN,

COMPARISON WITH RESULTS OBTAINED BY MPC METHOD

Ticker Var. No. 1 No. 2 No. 3 No. 4 MPC
CC gain 6880 25040 6380 -4320 34730

c1 2 6 10 20
CL gain 13770 27350 -20530 21490 -20300

c1 2 6 10 20
FV2 gain -42171 25269 33325 -52144 -38546

c1 2 8 10 20
JY gain -2493 7488 33538 -5008 52097

c1 2 4 10 20
W gain 25833 23448 22908 20018 29125

c1 2 7 10 20
Total gain 1819 108595 75621 -19964 57106

The paper contains the classification of the tasks implied
by the different behavior of the suboptimal strategies and
relates the behavior of suboptimal strategies to applicability
of presented approach.

The approach is applied and demonstrated on an example of
futures trading, which is a typical economic decision making
task. The behavior of suboptimal strategies is tested. Then, the
new design of Bellman function is applied for various settings.
Results of experiments are presented and compared. The com-
parison obtained result with MPC method is presented. The
results have proved the potential applicability of the approach
in the trading task.

A. Open questions

A questions remain open for the further research:
• The assumption on convergence (Sec. III-B) has the key

importance on applicability of the whole approach. The
assumption is valid on futures trading task, but there is
no evidence whether it is valid for other problems.

• The presented results were obtained on delegates of
available data (CC, CL, FV2, JY, and W). But only the
application on all available data can verify the method
and show the real advantages and disadvantages of the
approach.

• The trading problem is sufficient to find the main prop-
erties of the approach. But it is necessary to verify the
approach by another task with.

ACKNOWLEDGMENT

This work was supported by grants GA ČR 102/08/0567,
MŠMT 1M0572.

REFERENCES

[1] R. Bellman, Dynamic Programming. Princeton, New Jersey: Princeton
University Press, 1957.

[2] D. Bertsekas, Dynamic Programming and Optimal Control. Nashua,
US: Athena Scientific, 2001, 2nd edition.

[3] W. B. Powell, Approximate Dynamic Programming. Wiley-Interscience,
2007.

[4] R. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[5] B. Tsitsiklis, Neuro-Dynamic Programming. Athena Scientic, 1996.
[6] P. Werbos, Handbook of intelligent control: neural, fuzzy and adaptive

approaches. Van Nostrant Reinhold, 1992, ch. Approximate dynamic
programming for real-time control and neural modelling.

[7] A. G. Barto, S. J. Bradtke, and S. P. Singh, “Learning to act using real-
time dynamic programming,” Artificial Intelligence, vol. 72, no. 1-2, pp.
81–138, 1995.

[8] R. S. Sutton, “Learning to predict by the method of temporal differ-
ences,” Machine learning, vol. 3, no. 1, pp. 9–44, 1988.

[9] Watkins C., D. P., and and, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[10] S. Schaal, “Learning from demonstration,” in Advances in Neural Infor-
mation Processing Systems 9. MIT Press, 1997.

[11] R. H. Crites and A. G. Barto, “Elevator group control using multiple
reinforcement learning agents,” Machine learning, vol. 33, no. 2-3, pp.
235–262, 1998.

[12] J. M. Lee and J. H. Lee, “Approximate dynamic programming-based
approaches for input–output data-driven control of nonlinear processes,”
Automatica, vol. 41, no. 7, pp. 1281–1288, 2005.

[13] M. Kárný, B. J., T. V. Guy, L. Jirsa, I. Nagy, P. Nedoma, and
L. Tesař, Optimized Bayesian Dynamic Advising: Theory and Algorithms.
Springer, 2005.

[14] M. Kárný, J. Šindelář, Š. Pı́rko, and J. Zeman, “Adaptively optimized
trading with futures,” ÚTIA AV ČR, v.v.i., Tech. Rep., 2010.

[15] J. Hull, Options, futures, and other derivatives. Pearson/Prentice Hall,
2006.

[16] O. Křivánek and J. Zeman, “Experiment: Setting the length of the
regeressor,” ÚTIA AV ČR, v.v.i., Tech. Rep. 2262, 2009.

[17] O. Křivánek, Extended-Iterations-Spread-in-Time Strategy in Fully Prob-
abilistic Design (Master’s degree thesis). Czech Technical University,
2010.

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500

st
St

Time t

Fig. 2. Similarity indexes St and st according the time t (Petroleum-Crude
Oil Light - CL)

2160

2180

2200

2220

2240

2260

2280

2300

2160 2180 2200 2220 2240

st
St
t

Time t

Fig. 3. Detail of similarity indexes St and st according the time t (Petroleum-
Crude Oil Light - CL)

